HYPOTHESIS TESTING

Frances Chumney, PhD

CONTENT OUTLINE

- Logic of Hypothesis Testing
- Error & Alpha
- > Hypothesis Tests
- Effect Size
- Statistical Power

HYPOTHESIS TESTING

HYPOTHESIS TESTING

LOGIC OF HYPOTHESIS TESTING

how we conceptualize hypotheses

HYPOTHESIS TESTING LOGIC

Hypothesis Test

statistical method that uses sample data to evaluate a hypothesis about a population

➤ The Logic

- State a hypothesis about a population, usually concerning a population parameter
- Predict characteristics of a sample
- Obtain a random sample from the population
- Compare obtained data to prediction to see if they are consistent

STEPS IN HYPOTHESIS TESTING

- Step 1: State the Hypotheses
 - Null Hypothesis (H₀)
 - *in the general population there is no change, no difference, or no relationship; the independent variable will have no effect on the dependent variable*
 - \circ Example
 - All dogs have four legs.
 - There is no difference in the number of legs dogs have.
 - ✤ Alternative Hypothesis (H₁)

in the general population there is a change, a difference, or a relationship; the independent variable will have an effect on the dependent variable

- \circ Example
 - 20% of dogs have only three legs.

STEP 1: STATE THE HYPOTHESES (EXAMPLE)

➢ Example

How to Ace a Statistics Exam

little known facts about the positive impact of alcohol on memory during "cram" sessions

STEP 1: STATE THE HYPOTHESES (EXAMPLE)

- Dependent Variable
 - Amount of alcohol consumed the night before a statistics exam
- Independent/Treatment Variable
 - Intervention: Pamphlet (treatment group) or No Pamphlet (control group)

> Null Hypothesis (H_0)

- No difference in alcohol consumption between the two groups the night before a statistics exam.
- \succ Alternative Hypothesis (H₁)
 - The treatment group will consume more alcohol than the control group.

➢ Example

- ✤ Exam 1 (Previous Semester): µ = 85
- Null Hypothesis (H₀): treatment group will have mean exam score of M = 85 (σ = 8)
- Alternative Hypothesis (H₁): treatment group mean exam score will differ from M = 85

> Alpha Level/Level of Significance

probability value used to define the (unlikely) sample outcomes if the null hypothesis is true; e.g., $\alpha = .05$, $\alpha = .01$, $\alpha = .001$

Critical Region

extreme sample values that are very unlikely to be obtained if the null hypothesis is true

- Boundaries determined by alpha level
- If sample data falls within this region (the shaded tails), reject the null hypothesis

Critical Region Boundaries

- Assume normal distribution
- Alpha Level + Unit Normal Table
- Example: if α = .05, boundaries
 extreme 5%
 - 2.5% in each tail (2-tailed)

HYPOTHESIS TESTING

STEP 3: COLLECT, COMPUTE

- Collect data
- Compute sample mean
- \succ Transform sample mean *M* to *z*-score

$$z = \frac{M - \mu}{\sigma_M}$$

➤ Example #2

$$z = \frac{95 - 85}{1.13} = \frac{10}{1.13} = 8.85$$

STEP 4: MAKE A DECISION

Compare z-score with boundary of critical region for selected level of significance

≻ If...

- z-score falls in the tails, our mean is significantly different from H₀
 - Reject H₀
- *z*-score falls between the tails, our mean is not significantly different from H₀
 Fail to reject H₀

HYPOTHESIS TESTING: AN EXAMPLE (2-TAIL)

➢ How to Ace a Statistics Exam...

- Population: μ = 85, σ = 8
- Hypotheses
 - \circ H₀: Sample mean will not differ from *M* = 85
 - \circ H₁: Sample mean will differ from *M* = 85
- Set Criteria (Significance Level/Alpha Level) $\alpha = .05$

HYPOTHESIS TESTING: EXAMPLE (2-TAIL)

➢ How to Ace a Statistics Exam...

Collect Data & Compute Statistics

- Intervention to 9 students
- \circ Mean exam score, *M* = 90

$$\sigma_M = \frac{\sigma}{\sqrt{9}} = \frac{8}{3} = 2.67$$

$$z = \frac{90 - 85}{2.67} = \frac{5}{2.67} = 1.87$$

HYPOTHESIS TESTING: EXAMPLE (2-TAIL)

➢ How to Ace a Statistics Exam...

REVISITING Z-SCORE STATISTICS

- ➤ A Test Statistic
 - ✤ Single, specific statistic
 - Calculated from the sample data
 - ✤ Used to test H₀
- ➢ Rule of Thumb...
 - \clubsuit Large values of z
 - $\,\circ\,$ Sample data pry DID NOT occur by chance result of IV
 - Small values of z
 - $\,\circ\,$ Sample data pry DID occur by chance not result of IV

HYPOTHESIS TESTING

uncertainty leads to error

UNCERTAINTY & ERROR

- Hypothesis Testing = Inferential Process
 - LOTS of room for error
- ➤ Types of Error
 - ✤ Type I Error
 - ✤ Type II Error

TYPE 1 ERRORS

error that occurs when the null hypothesis is rejected even though it is really true; the researcher identifies a treatment effect that does not really exist (a false positive)

Common Cause & Biggest Problem

- ✤ Sample data are misleading due to sampling error
- Significant difference reported in literature even though it isn't real
- Type I Errors & Alpha Level
 - Alpha level = probability of committing a Type I Error
 - Lower alphas = less chances of Type I Error

TYPE II ERRORS

error that occurs when the null hypothesis is not rejected even it is really false; the researcher does not identify a treatment effect that really exists (a false negative)

Common Cause & Biggest Problem

- Sample mean in not in critical region even though there is a treatment effect
- Overlook effectiveness of interventions
- > Type II Errors & Probability
 - \Rightarrow β = probability of committing a Type II Error

TYPE I & TYPE II ERRORS

Experimenter's Decision

	Actual Situation	
	No Effect, H ₀ True	Effect Exists, H ₀ False
Reject H ₀	Type I Error	
Retain H ₀		Type II Error

SELECTING AN ALPHA LEVEL

- Functions of Alpha Level
 - Critical region boundaries
 - Probability of a Type I error
- Primary Concern in Alpha Selection
 - Minimize risk of Type I Error without maximizing risk of Type II Error
- Common Alpha Levels $\alpha = .05, \alpha = .01, \alpha = .001$

HYPOTHESIS TESTING

HYPOTHESIS TESTS

testing null hypotheses

HYPOTHESIS TESTS: INFLUENTIAL FACTORS

Magnitude of difference between sample mean and population mean (in zscore formula, larger difference => larger numerator)

$$z = \frac{M - \mu}{\sigma_M} \qquad \sigma_M = \frac{\sigma}{\sqrt{n}}$$

> Variability of scores (influences σ_M ; more variability \Rightarrow larger σ_M)

> Sample size (influences σ_M ; larger sample size \Rightarrow smaller σ_M)

HYPOTHESIS TESTS: **ASSUMPTIONS**

- Random Sampling
- Independent Observations
- > Value of σ is Constant
 - Despite treatment
- Normal sampling distribution

HYPOTHESIS TESTING

NON-DIRECTIONAL HYPOTHESIS TESTS

DIRECTIONAL HYPOTHESIS TESTS

HYPOTHESIS TESTING

ALTERNATIVE HYPOTHESES

- Alternative Hypotheses for 2-tailed tests
 - Do not specify direction of difference
 - Do not hypothesize whether sample mean should be lower or higher than population mean
- Alternative Hypotheses for 1-tailed tests
 - Specify a difference
 - Hypothesis specifies whether sample mean should be lower or higher than population mean

NULL HYPOTHESES

Null Hypotheses for 2-tailed tests

Specify no difference between sample & population

Null Hypotheses for 1-tailed tests

- Specify the opposite of the alternative hypothesis
- Example #2
 - H_0 : $\mu \le 85$ (There is no increase in test scores.)
 - \circ H₁: μ > 85 (There is an increase in test scores.)

HYPOTHESIS TESTS: AN EXAMPLE (1-TAIL)

- ➢ How to Ace a Statistics Exam...
 - Population: μ = 85, σ = 8
 - ✤ Hypotheses
 - \circ H₀: Sample mean will be less than or equal to *M* = 85
 - \circ H₁: Sample mean be greater than *M* = 85
 - Set Criteria (Significance Level/Alpha Level)

 α = .05

HYPOTHESIS TESTS: AN EXAMPLE (1-TAIL)

- ➢ How to Ace a Statistics Exam...
 - Collect Data & Compute Statistics
 - Intervention to 9 students
 - \circ Mean exam score, *M* = 90

$$\sigma_M = \frac{\sigma}{\sqrt{9}} = \frac{8}{3} = 2.67$$

$$z = \frac{M - \mu}{\sigma_M} = \frac{90 - 85}{2.67} = \frac{5}{2.67} = 1.87$$

HYPOTHESIS TESTS: AN EXAMPLE (1-TAIL)

- ➢ How to Ace a Statistics Exam...
 - ✤ Decision: Reject H₀

estimating the magnitude of an effect

EFFECT SIZE

HYPOTHESIS TESTING

EFFECT SIZE

Problem with hypothesis testing

- Significance ≠ Meaningful/Important/Big Effect
 - Significance is relative comparison: treatment effect compared to standard error

Effect Size

statistic that describes the magnitude of an effect

Measures size of treatment effect in terms of (population) standard deviation

EFFECT SIZE: COHEN'S D

> Not influenced by sample size

Cohen's $d = \frac{\text{mean difference}}{\text{standard deviation}}$

\succ Evaluating Cohen's d

- Calculated the same for 1-tailed and 2-tailed tests

probability of correctly rejecting a false null hypothesis STATISTICAL POWER

HYPOTHESIS TESTING

STATISTICAL POWER

the probability of correctly rejecting a null hypothesis when it is not true; the probability that a hypothesis test will identify a treatment effect when if one really exists

≻ A priori

- Calculate power before collecting data
- Determine probability of finding treatment effect
- ➢ Power is influenced by...
 - ✤ Sample size
 - Expected effect size
 - ↔ Significance level for hypothesis test (α)

